这里是简介
题意
给出一个长为$n$序列$[1,2,…,n]$,$m$次操作,每次指定一段区间$[l,r]$,将这段区间翻转,求最终序列
题解
虽然标题是$Splay$,但是我要用$FHQ\ Treap$,考虑先将$[l,r]$这段区间$split$出来($k$即为这段区间)
void split(int o, int k, int &l, int &r) {
if(!o) { l = r = 0; return ; }
if(siz[lc[o]] < k) l = o, split(rc[o], k - siz[lc[o]] - 1, rc[o], r);
else r = o, split(lc[o], k, l, lc[o]);
upt(o);
}//注意这里要按size来split
//写在main函数中
while(m--) {
read(x), read(y);
split(rt, y, l, r), split(l, x - 1, l, k);
rev[k] ^= 1; rt = merge(merge(l, k), r);
}//x,y为操作的区间
然后再将这段区间打一个翻转标记(因为平衡树是可以中序遍历输出的吧…,$rev$为翻转标记)
每次涉及到某个节点时,将$rev$标记下放就好了
void pushdown(int o) {
std::swap(lc[o], rc[o]);
if(lc[o]) rev[lc[o]] ^= 1;
if(rc[o]) rev[rc[o]] ^= 1;
rev[o] = 0;
}
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 1e5 + 10;
int n, m, lc[N], rc[N], siz[N], val[N], pri[N], rev[N], tot;
inline void upt(int o) { siz[o] = siz[lc[o]] + siz[rc[o]] + 1; }
inline int node(int x) { val[++tot] = x, pri[tot] = rand(), siz[tot] = 1; return tot;}
void pushdown(int o) {
std::swap(lc[o], rc[o]);
if(lc[o]) rev[lc[o]] ^= 1;
if(rc[o]) rev[rc[o]] ^= 1;
rev[o] = 0;
}
void split(int o, int k, int &l, int &r) {
if(!o) { l = r = 0; return ; }
if(rev[o]) pushdown(o);
if(siz[lc[o]] < k) l = o, split(rc[o], k - siz[lc[o]] - 1, rc[o], r);
else r = o, split(lc[o], k, l, lc[o]);
upt(o);
}
int merge(int l, int r) {
if(!l || !r) return l + r;
if(pri[l] < pri[r]) { if(rev[l]) pushdown(l); rc[l] = merge(rc[l], r), upt(l); return l; }
else { if(rev[r]) pushdown(r); lc[r] = merge(l, lc[r]), upt(r); return r; }
}
void print(int o) {
if(!o) return ;
if(rev[o]) pushdown(o);
print(lc[o]), printf("%d ", val[o]), print(rc[o]);
}
int main () {
read(n), read(m), srand((unsigned)time(NULL));
int x, y, l, r, k, rt = 0;
for(int i = 1; i <= n; ++i) rt = merge(rt, node(i));
while(m--) {
read(x), read(y);
split(rt, y, l, r), split(l, x - 1, l, k);
rev[k] ^= 1; rt = merge(merge(l, k), r);
} print(rt);
return 0;
}