Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)

题面

Bzoj

洛谷

题解

考虑带权并查集,设$f[i]$表示$i$的父亲($\forall f[i]<i$),$sum[i]$表示$\sum\limits_{j=fa[i]}^ia[j]$,对于一组输入的$[x,y,z]$,有:

1.如果$f[x-1]=f[y]$

这个时候直接判断$sum[y]-sum[x-1]$是否等于$z$就行了。

2.如果$f[x-1]\not= f[y]$

将$f[y]$的$f$定为$f[x-1]$,则$sum[f[y]]=sum[x-1]+z-sum[y]$


如果要用差分约束系统来写,就是打板子判负/正环了,但是带权并查集更好写

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;

template<typename T>
void read(T &x) {
    int flag = 1; x = 0; char ch = getchar();
    while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
    while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}

const int N = 1e2 + 10;
int t, n, m, fa[N]; ll s[N];
int find (int x) {
    if(fa[x] == -1) return x;
    int tmp = find(fa[x]);
    s[x] += s[fa[x]];
    return fa[x] = tmp;
}

int main () {
    read(t);
    while(t--) {
        bool fail = false;
        read(n), read(m);
        memset(fa, -1, sizeof fa);
        memset(s, 0, sizeof s);
        int x, y; ll z;
        for(int i = 1; i <= m; ++i) {
            read(x), read(y), read(z), --x;
            int fx = find(x), fy = find(y);
            if(fx == fy) {
                if(s[y] - s[x] != z) {
                    fail = true; break;
                }
            } else fa[fy] = fx, s[fy] = s[x] + z - s[y];
        }
        puts(fail ? "false" : "true");
    }
    return 0;
}